
1 Suites
Exercice 1. Avec taux d’accroissement connus calculer les limites:

1. limn→∞
e

1
n2 −1

sin(1/n)

2. limn→∞ ln
(
1 + 1

3 sin(n
4) · 1

n2

)
3. limn→∞

1

ee−n−1
· sin(2−n)

4. limn→∞ n

√
ln
(
1 + 1

n2+1

)

Exercice 2. Étudier convergence

1. cos(n)
n+1

2.
√
n+ 1−

√
n− 1

3.
√
n2 + n−

√
n2 − n

4. en+n
n4+1

5. en+(−1)n sin(n100)
n5+lnn

6. lnn+1
n4+5

7. sin(1/n) cos(n)
cos(1/n200)

8. sin(1/n2)ecos(1/n
2−5n−5)

2sin(n)

9.
(
n+4
4

)
ln
(
1 + sin

(
1

(1+n)(2+n)(3+n)(4+n)

))
10.

(
n+3
3

)
ln

(
1 +

cos(n2)
2 sin

(
1

(1+n)(2+n)(3+n)

))

Exercice 3. Soit α ∈ (0, 1) et un donné par une formule recursive:

un+1 = uαn + 1 u0 > 0

Démontrer que un est majoré pour tout n ∈ N.

Exercice 4. Soit (un)n∈N la suite réelle définie par u0 = 1 et, pour tout n ≥ 0,

un+1 = 2un + n.

1. Montrer qu’il existe une suite arithmétique (vn)n∈N vérifiant la même relation de récurrence que
(un)n∈N.

2. En étudiant la suite (un − vn)n∈N, déterminer l’expression de un en fonction de n.

Exercice 5. Soit (un)n∈N une suite telle que

∀n ∈ N, un+1 = 2un + 5n.

1. Pour tout n ∈ N, on pose vn = un

5n . Montrer que (vn)n∈N est arithmético-géométrique ; en déduire
l’expression de son terme général.

2. En déduire l’expression du terme général de la suite (un)n∈N.
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Exercice 6.

1. Déterminer toutes les suites réelles bornées (un)n∈N telles que

∀n ∈ N, un+2 + un+1 − 2un = 0.

2. Déterminer toutes les suites réelles bornées (vn)n∈N telles que

∀n ∈ N, vn+2 − 5vn+1 + 6vn = 12(−1)n.

Exercice 7. Soit ℓ ∈ R+ ∪{+∞}. Construire deux suites (un)n∈N et (vn)n∈N tendant respectivement
vers 1 et +∞, telles que

unvn −−−−−→
n→+∞

ℓ.

Exercice 8. Étudier la convergence des trois suites (un)n≥1 dont les termes généraux sont les suivants
:

1. un =
∑n
k=1

n
n2+k ;

2. un = 1
n2

∑n
k=1⌊kx⌋ ;

3. un = 1
n!

∑n
k=1 k!.

Exercice 9. Montrer que la suite de terme général

n∑
k=0

(
n

k

)−1

est convergente et préciser sa limite.

Exercice 10. Soit (un)n∈N une suite réelle telle que

un −−−−−→
n→+∞

0.

Montrer que
1

n2

n∑
k=1

k uk −−−−−→
n→+∞

0.

Exercice 11. Soit (un)n∈N∗ une suite positive sous-additive, c’est-à-dire telle que

∀n,m ∈ N∗, un+m ≤ un + um.

1. Montrer que pour tout n ∈ N∗ et tout δ > 0, il existe N ∈ N tel que pour tout m ≥ N ,

um
m

≤ un
n

+ δ.

2. Montrer que
un
n

−−−−−→
n→+∞

inf
k∈N∗

uk
k
.
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2 Polynoms
Exercice 12. Soit a ∈ R et n ∈ N∗.

1. Résoudre dans C l’équation
(z + 1)n = ei2na.

2. En déduire
n−1∏
k=0

sin
(
a+

kπ

n

)
puis

n−1∏
k=1

sin
(kπ
n

)
.

Exercice 13. Soit n ∈ N. Déterminer le reste de la division euclidienne de A par B dans les cas
suivants :

1. A = Xn et B = X2 − 3X + 2 ;

2. A = Xn et B = (X − 1)2 ;

3. A = (X sin t+ cos t)n et B = X2 + 1, où t est un réel.

Exercice 14. Soit P ∈ Q[X] tel que P (
√
2) = 0. Montrer que P (−

√
2) = 0.

Exercice 15. Montrer qu’il n’existe pas de polynôme P ∈ R[X] tel que

∃A > 0 ∀x ≥ A, P (x) = ln(x).

Exercice 16. Soit n ∈ N.

1. Soit p, q ∈ N. En calculant de deux façons différentes le produit (1 + X)p(1 + X)q, montrer la
formule de convolution de Vandermonde :

n∑
k=0

(
p

k

)(
q

n− k

)
=

(
p+ q

n

)
.

2. En déduire la valeur de
n∑
k=0

(
n

k

)2

.

Exercice 17. Soit P ∈ K[X]. Montrer qu’il existe Q ∈ K[X] tel que

P (P (X))−X = Q(X)
(
P (X)−X

)
.

Exercice 18.

1. Soit P ∈ K[X]. Montrer qu’il existe un unique couple (R0, R1) ∈ K[X]2 tel que

P (X) = R0(X
2) +XR1(X

2).

2. Soit P,Q ∈ K[X] tels que
P (X)2 = Q(X2).

Montrer qu’il existe R ∈ K[X] tel que

P (X) = R(X2) ou P (X) = XR(X2).

Exercice 19.

1. Montrer que tout polynôme P ∈ C[X] tel que P (X + 1) = P (X) est constant.
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2. Résoudre l’équation
P (X + 1)− P (X) = X,

d’inconnue P ∈ C[X].

Exercice 20. Déterminer tous les polynômes P ∈ K[X] tels que :

1. P (2X) = P (X)− 1 ;

2. P (X2) = (X2 + 1)P (X) ;

3. P ◦ P = P ;

4. Il existe Q ∈ K[X] tel que Q2 = XP 2.

Exercice 21. Trouver tous les polynômes P ∈ R[X] tels que

∀k ∈ Z,
∫ k+1

k

P (t) dt = k + 1.

Exercice 22. Déterminer les polynômes P ∈ C[X] tels que

X(X + 1)P ′′(X) + (X + 2)P ′(X)− P (X) = 0.

3 Continuite, limites, variations
Exercice 23. Étudier la continuité de la fonction

x 7−→ ⌊x⌋+ (x− ⌊x⌋)2.

Exercice 24. Soit f : R → R une fonction périodique. Montrer que f possède une limite en +∞ si
et seulement si f est constante.

Exercice 25. Soit f : R → R une fonction bijective et croissante. Montrer que

f(x) −−−−−→
x→+∞

+∞.

Exercice 26. Soit f : R → R une fonction. Montrer que

f(x) −−−→
x→0

ℓ si et seulement si f(sinx) −−−→
x→0

ℓ.

Exercice 27. Soit f : [−1, 1] → (0, 1] une fonction continue. Démontrer que une equation f(x) = x4

possède au moins deux solutions.

Exercice 28. Soit f une fonction continue définie sur l’interval [1/(2
√
2), 2

√
2] et qui vérifie l’égalité

f(2
√
2)− f(1/(2

√
2)) = 3

Démontrer qu’il existe une nombre réele x telle que f(2x)− f(x) = 1.

Exercice 29. Trouver les valeurs a, b, c ∈ R pour lesquels une fonction f est continue sur R

f(x) =

{√
x2 + a2 |x| > 1

ax2 + bx+ c |x| ≤ 1
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Exercice 30. De même, mais pour f : (0,∞) 7→ R ci-dessous:

f(x) =

{
a
√
x−b

x2−4 x > 2
cx
x−2 0 < x < 2

Exercice 31. Soit f(x) = ln(1− x2), |x| ≤ 1. Trouver toutes les polynôms pour lesquels la limite

lim
x→0

Q(x)

f(x)

existe et est une nombre réele.

Exercice 32.
A l’aide de théorème d’accroissements finis ou fonctions equivalents determiner

lim
x→∞

(
(x+ 1) e

1
1+x − xe

1
x

)
Exercice 33.

En utilisant les memes outils démontrer

(n+ 1)
1

n+1 − n
1
n ≃ − lnn

n2

Exercice 34.
Montrer que

∀x > 0
1

1 + x
< ln(1 + x)− ln(x) <

1

x

En déduire, pour k ∈ N \ {0, 1}

lim
n→∞

kn∑
p=n+1

1

p

Exercice 35.
Calculer une limite:

lim
x→∞

[
1

sin( 1
x+φ(x) )

− 1

sin( 1
x+ψ(x) )

]
où φ(x) =

(
1 + 1

x

)x et ψ(x) = x
1
x .

Exercice 36.
Calculer la dérivée n-ieme:

x 7→ cos3(x) (1)
x 7→ x cos(x) (2)

x 7→ x2(1 + x)n (3)

Exercice 37.
Determiner si une fonction

f(x) =

{
x−1
x exp (−1/ |x|) x ̸= 0

0 x = 0

est

1. continue en x0 = 0.
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2. Derivable ?

3. trouver inf et sup sur R

Exercice 38.
Soit f(x) = sin ln(x) pour x > 0. Determiner c, d > 0 telles que:

1. f est lipschitzienne sur [c,∞)

2. f est lipschitzienne sur (0, d]

Exercice 39.
Trouver inf d’une fonction

f(x) = ln(ex − 1) +
2

x
− x

Exercice 40.
Trouver toutes les nombres reels a, b telles qu’une fonction

f(x) =

{
a(x+ 1) + sin(bx) x ≥ 0
cos(x)−1
x sin(x) x ∈ (−π, 0)

soit derivable

Exercice 41.
Determiner la table de variation d’une fonction

f(x) = e−|2x+1| (x2 + 2x+ 3
)

Exercice 42.
Soit a, b, c > 0 les cotes d’une triangle et soit a+ b+ c = 2p. Fixons p > 0. Trouver a, b, c telles que

l’area A de ce triangle soit maximale.
Rappel : A =

√
p(p− a)(p− b)(p− c)

Exercice 43.
Demontrer

lim
x→0

1− cos(x)

x2/2
= 1

Indic. utiliser ∀x > a f(x) = f(a) +
∫ x
a
f ′(s)ds

Exercice 44.
Calculer une limite:

lim
x→π

4

cos(2x)

cos(x)− sin(x)

Exercice 45.
Calculer une limite:

lim
x→0

ln(cos(2x))

x · sin(sin(x))
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4 Convexite
Exercice 46.

Trouver les extrema locaux d’une fonction f :]0, e2[→ R

f(x) =
−2

ln(x)− 2

Existe-t-il un entier n ∈ N tel que g(x) = (f(x))
n est convexe sur toute l’intervalle ]0, e2[ ?

Exercice 47.
Soit fn(x) = n

√
exp (x) : [0, 1] 7→ R. Existe-t-il un entier n ∈ N tel que fn est concave (c’est-a-dire

−fn est convexe) sur l’intervalle [0, 1] ?

Exercice 48.
En utilisant l’inégalité de Jensen démontrer que si N ∈ N et (xi)i∈{1,...,N} est une ensemble de

nombres positifs, alors pour p ≥ 1 on a:(
N∑
i=1

xi

)p
≤ Np−1

N∑
i=1

xpi

Exercice 49.
Démontrer que pour toutes x, y ∈ R+ on a

xx · yy ≥
(
x+ y

2

)(x+y)

Exercice 50.
Démontrer que pour toutes e < x < y on a

xy < yx

Exercice 51. Soit f :

f(x) =
( 3
√
x)5 + 3

3
√
x8

x · 6
√
x

Démontrer que si a, b, c > 0 et a+ b+ c = 3 alors f(a) + f(b) + f(c) ≥ 12.

5 Developpement limites
Exercice 52.

Démontrer que pour |x| < 1 l’erreur d’approximation

cos(x) ≃ 1− x2

2
+
x4

24

ne dépasse pas 1
720 .

Exercice 53.
Calculer le cinqiueme terme de DL de x 7→ sin(tan(x)).

Exercice 54.
Trouver toutes les a, b telles que la limite

lim
x→0

x− (a+ b cos(x)) sin(x)

x5

existe
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Exercice 55.
Calculer la limite:

lim
x→0

2 sin(1− cos(x))− (tan(sin(x)))2

(1− cos(x))
2

Exercice 56.
DL autour de x = 2 de f(x) = x5 + x4 + 2x+ 1

Exercice 57.
En utilisant seulement le DL, calculer ln 3− ln 2 avec precision ≃ 1/1000.

Exercice 58.
A l’aide de DL pour n = 3, trouver l’approximation de 3

√
e. Donner l’erreur de l’approximation.

Exercice 59.
Calculer une limite

lim
x→0

(
arctan(x)

x

) 1
x2

Exercice 60.

lim
x→0

(
1

x sin(x) tan(x sin(x))
− 1

x2 sin2 x

)

Exercice 61.
Soit f(x) = 2− 2 cos(x)− x · sin(sin(x)) et considerons an = f(1/n) pour n ∈ N. Trouver toutes les

nombres reels w telles que

lim
n→∞

nawn = 0

Exercice 62.

lim
x→0

arcsin(x)− x

tan(2x)− 2 ln(1 + x)− x2

6 Algebre lineaire
Exercice 63.

Soit V,W sous-espaces de R6 et V ⊂W, dimV = 5,W ̸= R6. Est-ce que ça veut dire que W = V ?

Exercice 64.
Soit φ : V → W ou V,W sont deux espaces vectoriels de dimension fini sur Q. Soit A une base

d’espace V . Est-ce qu’on peut toujours trouver une base B de W telle que toutes les coefficients de
M(φ)B→A appartiennent aux entieres ?

Exercice 65.
Soit V un espace vectoriel donne par:

V = Vect ((1, 2, 0, 1, 0), (0, 1, 1, 1, 1), (2, 2, 3, 0, 3), (1, 3, 1, 2, 1))

Trouver dim d’un espace V ∩ Vect ((3, 1, 2,−1, 2), (1, 1, 1, 1, 1))

Exercice 66.
On considere u = (1, 0, 1, 0), v = (0, 1,−1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0), y = (1, 1, 0,−1). Soit

F = Vect (u,w, v) , G = Vect (x, y). Determiner dimensions de F,G, F +G,F ∩G.
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Exercice 67.
Soit φ : R5 → R5 l’application lineaire. Est-ce possible que dimkerφ = dim imφ ?

Exercice 68.
Soit A = {α1, α2, α3}, B = {β1, β2, β3} des bases d’espace lineaire V sur R, et

β1 = 2α1 − α2 − α3 β2 = −α2 β3 = 2α2 + α3

Existe-t-il un vecteur γ ∈ V qui a les coordonnées identique dans les bases A et B ?

Exercice 69.
Soit φ une application lineaire R4 7→ R3 donne par:

φ(x1, x2, x3, x4) = (x1 + x2 + 2x3 − x4, x1 − x3 + x4, 3x1 + x2 + x4)

1. Trouver une base de kerφ

2. Determiner une matrice de transition/passage PA→st ou

A = Vect ((1, 1, 0), (0, 1, 2), (0, 0, 1))

3. Trouver, si possible, les bases B, C des espaces R4,R3 (respectivement) telles que une matrice PC→B
a exactement deux coefficients non-nulles

Exercice 70.
Soit une base A = Vect ((0, 1,−2), (1, 1,−1), (0, 1,−1)) et pour chaque t ∈ R definissons φt : R3 → R3:

M(φ)A→A =

 1 1 t
2 t 2
−1 1 −1


1. Pour quelles valeurs de t φ est-elle une isomorphisme ?

2. Determiner φ0(1, 2, 3)

Exercice 71.
Soit V1 = Vect ((2, 1, 1, 1), (3, 1, 0, 2), (1, 1, 2, 0)) et V2{

−3x2 + x3 + x4 = 0

tx1 + x3 = 0

Trouver toutes t ∈ R telle que V1
⊕
V2 = R4. Trouver une base de V1 ∪ V2 en fonction de t

Exercice 72.
Soit A,B des bases donnes par

A = {(3, 1, 1), (1, 0, 0), (5, 1, 0)}, B = {(3, 4, 5), (4, 1, 1), (2, 0, 1)}.

1. Determiner une matrice MAB(f) d’application lineaire f ∈ End(R3) donne par

f(x, y, z) = (4x+ y + z, 3x+ 2y + z, 3x+ 2y + z).

2. Donner une endomorphisme g ∈ End(R3) avec une matrice

MAB(g) =

1 1 4
2 1 3
0 1 1

 .
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Exercice 73.
Soit

A = {(1,−2, 0), (1, 1, 1), (0, 0,−1)},

B = {(1, 0, 1, 0), (0, 1, 1, 1), (0, 1, 1, 0), (1, 1, 1, 1)},

C = {(1, 1), (−1, 0)}.

L’application f ∈ L(R3,R4) est donne par

f(x, y, z) = (3x− y − 2z, x+ y + z,−x+ 2z, x+ 2y − z),

mais g ∈ L(R4,R2) est determine par

MBC(g) =

[
0 2 1 1
2 1 0 3

]
.

Calculer MAC(g ◦ f) et Mst(g ◦ f).

Exercice 74.
Soit V =M2,3(Q) et

A =

[
0 1
−1 2

]
∈M2(Q), B =

 1 1 1
−1 2 −1
0 0 1

 ∈M3(Q).

La transformation f : V → V définie par

f(X) = AX +XB

est-elle linéaire ? Si oui, déterminez la matrice ME(f) dans la base E = {E11, E12, E13, E21, E22, E23},
où Eij ∈M2,3(Q) est la matrice dont l’élément (i, j) est égal à 1 et les autres éléments sont nuls.

Exercice 75.
Soit U = Vect ((1, i, 1), (2, 1− i, 0)) ∈ C3. Trouver sous-espace V telle que V

⊕
U = C3. Trouver

une matrice de projecteur M sur U .

Exercice 76.
Trouver une exemple d’endomorphisme φ : R3 → R3:

φ3 = 0 kerφ = Vect ((−1, 2, 1)) (1, 1, 2) ∈ imφ

Exercice 77.
Soit f ∈ L(R3) tel que f ̸= 0 et f2 = 0.

1. Demontrer que dimker f = 2

2. Demontrer qu’il existe une base B dans laquelle la matrice de f est egale a0 0 1
0 0 0
0 0 0


Exercice 78.

Soit V,W sous-espaces de R6 et V ⊂W, dimV = 5,W ̸= R6. Est-ce que ça veut dire que W = V ?

Exercice 79.
Soit f une application f : C → C lineaire sur R2 avec une base {1, i} qui est determine par une

matrice M =

(
a c
b c

)
, c’est-a-dire

z = (zR, zC) = zR + izC f(z) =Mz = (azR + czC , bzR + dzC) = (azR + czC) + i(bzR + dzC)
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Demontrer qu’il existent p, q ∈ C telles que f(z) = pz + qz̄. Trouver les conditions sur p, q pour que
f soit lineaire en C.

Exercice 80.
Soit V1 = Vect ((2, 1, 1, 1), (3, 1, 0, 2), (1, 1, 2, 0)) et V2{

−3x2 + x3 + x4 = 0

tx1 + x3 = 0

Trouver toutes t ∈ R telle que V1
⊕
V2 = R4. Trouver une base de V1 ∪ V2 en fonction de t

Exercice 81.
Soit V un espace vectoriel donne par:

V = Vect ((1, 2, 0, 1, 0), (0, 1, 1, 1, 1), (2, 2, 3, 0, 3), (1, 3, 1, 2, 1))

Trouver dim d’un espace V ∩ Vect ((3, 1, 2,−1, 2), (1, 1, 1, 1, 1))

Exercice 82.
Dans l’espace R11 on a deux sous-espaces V,W et dimV = 6,dimW = 8. Est-ce possible que

dimV ∩W = 5, si oui donner l’exemple.

Exercice 83.
On considere u = (1, 0, 1, 0), v = (0, 1,−1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0), y = (1, 1, 0,−1). Soit

F = Vect (u,w, v) , G = Vect (x, y). Determiner dimensions de F,G, F +G,F ∩G.

Exercice 84.
Soit X = {f ∈ C[x], degf ≤ 3} et U = {f(0) = f ′(0) = 0}, U ⊂ X. Trouver V ⊂ X telle que

V
⊕
U = X et trouver le projecteur p ∈ End(X) sur U .

Exercice 85.
Soit E un K-espace vectoriel de dimension 3 et e = (e1, e2, e3) une base de E. Soit

ε1 = e1 + 2e2 + 2e3 ε2 = e2 + e3

Montrer que la famille (ε1; ε2) est libre et compléter celle-ci en une base de E.

Exercice 86.
Soit f : R2[x] → R2[x]

f(p(x)) = − (x+ 1)2

2
p′′(x) + (x+ 1)p′(x)

Demontrer que f est lineaire et que f ◦ f = f . Trouver ker f, imf et ses bases.

Exercice 87.
Soit E = R4[X] et a, b deux réels distincts. On désigne par F l’ensemble des polynômes de E dont a

et b sont racines. Montrer que F est un sous-espace vectoriel de E. En donner une base.

Exercice 88.
Soit f : R4 → R3 application lineaire donne par:

f(x1, x2, x3, x4) = (x1 + 2x2 − x3 + 3x4, 2x1 + 5x2 + x3 + 7x4, x1 + x2 − 4x3 + 2x− 4)

Trouver une dimension d’espace E = {u ∈ End(R4) : f ◦ u = 0}. (on peut voir l’espace End(Rd)
comme un espace de matrices)

Exercice 89.
Soit W ⊂ R4[x] sous-espace d’espace de polynom w =

∑4
j=0 ajx

j qui satisfie:

∀x ∈ R \ {0} x4 · w(1/x) = w(x)

Ecrire W comme l’espace de solutions des equations lineaires entre a0, a1, ..., a4.
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Soit w1 = 1 + tx2 + x4, w2 = sx2, w3 = 1 + tx− x2 + tx3 + x4. Pour quel valeurs de parametres s, t
les polynoms w1, w2, w3 forment la base d’espace W .

Exercice 90.
Soit (e1, ...., ep) une famille libre de vecteurs de E, F = Vect ((e1, ..., ep)) et G un supplémentaire de

F dans E. Pour tout a ∈ G, on note
Fa = Vect (e1 + a, ..., ep + a)
Montrer que Fa

⊕
G = E. Soit a, b ∈ G, montrer que a ̸= b⇒ Fa ̸= Fb.

Exercice 91.

Soit A ∈ M2,3, B ∈ M3,2 et AB =

0 0 0
0 1 0
0 0 1

. Soit f : R2 → R3 et pour x ∈ R3 on a f(x) = A · x

(produit d’une matrice et d’un vecteur) et soit g : R3 → R2 avec g(x) = B · x. Alors h = f ◦ g et
h(x) = AB · x par composition de applications lineaires.

Determiner BA.

Exercice 92.
Soit M une matrice avec diagonale dominante (mii >

∑
j ̸=i |mij |) et soit φ(x) = Mx pour x ∈ Rn.

Demontrer que kerφ = {0}.
Exemple d’une matrice qui verifie cette propriete est une matrice d’identite In. Clairement pour

ψ(x) = Inx on a kerψ = {0}.

Exercice 93.
Déterminer les rangs des matrices 

1 −1 0 3
2 −3 2 1
1 2 1 3
0 4 0 −2

 ,


1 2 3 4 5
0 −2 −1 3 1
2 0 −5 3 −4
−3 −1 −2 1 3

 ,

1 + i −1 3− 2i
0 2 + 3i −1
0 5− i 9
−1 8 7i

 .
Exercice 94.

Déterminer les rangs des matrices: a −b 1
b a 1
1 1 c

 ,

10 −1 −1 3
2s −3 2 1
4 2 t+ 3 3
0 −2 3 1

 ,

3 4 2 1 2
2 3 1 4 6
1 2 t 2− 2t 7 10
4 5 3 −t −2


en fonction de parametres a, b, c ∈ R et s, t ∈ C.

Exercice 95.
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Pour quel x ∈ R on a

rg


x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x

 = 3?

Exercice 96.
Soit A ∈Mn,n, B ∈Mn,m, c’est-à-dire les matrices representatives les applications linéaires φ : Rn →

Rn, ψ : Rm → Rn. Soit A une matrice inversible. est-ce que rangs des matrices B et AB sont égaux ?

Exercice 97.
Soit A = {α1, α2, α3},B = {β1, β2} pour α1 = (1, 1, 1), α2 = (1, 2, 3), α3 = (1, 2, 2), β1 = (1, 1), β2 =

(1, 2). et soit φ : R3 → R2 l’application lineaire avec:

M(φ)AB =

(
3 1 −1
−1 0 1

)
1. Trouver M(φ)stst

2. Pour α = 2α1 − 3α2 + 4α3 trouver les coordonnes φ(α) en base B

3. Soit ψ une application lineaire avec matrice M(ψ)Ast =

1 3
1 0
2 5

. Demontrer que dimker(φ◦ψ) = 1

Exercice 98.
Soit f : R4 → R3 application linéaire donne par:

f(x1, x2, x3, x4) = (x1 + 2x2 − x3 + 3x4, 2x1 + 5x2 + x3 + 7x4, x1 + x2 − 4x3 + 2x− 4)

Trouver une dimension d’espace E = {u ∈ End(R4) : f ◦ u = 0}. (on peut voir l’espace End(Rd)
comme un espace de matrices)

Exercice 99.
Soit f ∈ L(R3) tel que f ̸= 0 et f2 = 0.

1. Démontrer que dimker f = 2

2. Démontrer qu’il existe une base B dans laquelle la matrice de f est égale à0 0 1
0 0 0
0 0 0


Exercice 100.

Soit A ∈ M2,3, B ∈ M3,2 et AB =

0 0 0
0 1 0
0 0 1

. Soit f : R2 → R3 et pour x ∈ R3 on a f(x) = A · x

(produit d’une matrice et d’un vecteur) et soit g : R3 → R2 avec g(x) = B · x. Alors h = f ◦ g et
h(x) = AB · x par composition de applications lineaires.

Determiner BA.

7 Determinants
Exercice 101.

Expliquer, sans faire le calcul explicite, pourquoi le determinant vaut zero:
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1. 
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 0 0 0
a41 a42 0 0 0
a51 a52 0 0 0


2.

Cij = ai1b1j + ai2b2j i, j ∈ {1, 2, 3}

Exercice 102.
Soit P une matrice avec Pij = 1 si i+ j = n+ 1 et Pij = 0 sinon. Calculer detP

Exercice 103.
Soit A ∈ Mn(R) et S = {(i, j) ∈ {1, ..., n} × {1, ..., n} : Aij = 0}. Démontrer que si |S| > n(n − 1)

alors detA = 0.

Exercice 104.
Soit Mt: 

0 0 1 2
2 1 1 t
t 2 3 1
3 1 t 2


Trouver les valeurs t pour lesquelles Mt est inversible.

Exercice 105.
Calculer les determinants 

0 0 a1 b1
0 0 a2 b2
a3 b3 0 0
a4 b4 0 0



a1 0 0 b1
0 a2 b2 0
0 a3 b3 0
a4 0 0 b4


Exercice 106.

Soit a1, a2, ..., an ∈ C les nombres différents. Trouver une solution d’une equation:

det


1 1 1 . . . 1
1 z − a1 1 . . . 1
...

...
...

. . .
...

1 1
... 1 z − an

 = 0

Exercice 107.
Soit a, b, c ∈ C. Calculer le determinant d’une matrice:z1 z2 z3

z2 z3 z1
z3 z1 z2


où z1, z2, z3 ∈ C sont les racines d’une equation z3 + az2 + bz + c = 0

Exercice 108.
Trouver x:

det


1 x 1 2
2 x 2 0
1 2 1 x
0 1 x 2

 = 0
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Exercice 109.
Soit A,B,C ∈ Mn(R) et AB = BA,AC = CA,BC = CB. Démontrer que det(A2 + B2) ≥ 0,

det(A2 +AB +B2) ≥ 0, det(A2 +B2 + C2 −AB −BC −AC) ≥ 0

Exercice 110.
Soit xij : R → R une famille de fonctions dérivables. Soit X(t) = (xij(t))ij une matrice pour t ∈ R.

Démontrer qu’une fonction f(t) = detX(t) est dérivable et démontrer que:

f ′(t) =
∑
j

Xj(t)

où Xj(t) est une matrice égale à X(t) à l’exception d’une j-eme colonne, où on a Xj(t)ij = x′ij(t).
En déduire que d

dt det I + tA|t=0= trA.
Rappel : trA =

∑
iAii

Exercice 111.
Soit n ≥ 1 et An une matrice avec Aii = 2, Aij = −1 si |i− j| = 1 et 0 sinon. Démontrer que

detAn = n+ 1

Exercice 112.
Soit An: 

a+ b ab 0 . . . 0 0
1 a+ b ab . . . 0 0
0 1 a+ b . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a+ b ab
0 0 0 . . . 1 a+ b


Démontrer que detAn = an+1−bn+1

a−b

Exercice 113.

Soit An ∈Mn et (An)ij =


1 i = j√
−1 |i− j| = 1

0 sinon
.

Démontrer que detAn vérifie la suite de Fibonacci.

8 Series numeriques
Exercice 114. Soit an telle que

∑
an <∞. Est-ce que∑

a4/5n

∑
an sin(an)

sont toujours convergentes ?

Exercice 115.

1. Démontrer que la série

ε > 0
∑
k≥0

2−k(1+ε)
1

exp(2−k)− 1

converge.

2. Est-ce que la conclusion restera la même si ε < 0 ?
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Exercice 116.

1. En passant par la comparaison séries/integral démontrer qu’il existe un constante Cf telle que
lnn! ≥ Cf (n lnn− n) (au moins pour n assez grand)

2. Soit (ak)k≥1 telle que ∀k ≥ 1 ak ≤ Ck pour une constante C > 0. Démontrer qu’il existe λ > 0
telle qu’une serie suivante converge

∑
k≥1

(λak)
k

k!

Indication: en utilisant la bornee d’un point 1., échanger k! ≃ exp (n lnn− n), borner par une serie
qui converge.

Exercice 117. Trouver la somme d’une serie ou démontrer qu’elle n’existe pas∑
n≥1

(
n+ 1

2n+ 1
− n+ 2

2n+ 3

)

Exercice 118. Étudier convergence

∑
n≥1

2n
(

n

n+ 1

)n2

Exercice 119.

1. Étudier convergence d’une serie avec an:

an = 2(1−
n√2)

2. Trouver toutes les valeurs du parametre a ∈ R+ telles qu’une série:

εn = 2
1

1−
√

n2 an = aεn

converge.

Exercice 120.

1. Soit
∑
n≥1 an une série convergent. Est-ce qu’une serie:

∑
n≥1

√
an

lnn
(nan − 1)

converge ? Si oui, donner une preuve, sinon donner une contrexemple.

2. Soit α, β > 0. Trouver condition suffisante sur α, β pour qu’une serie∑
n≥1

aαn
lnn

(
n(an)

β

− 1
)

converge. (on n’étudiera pas la condition nécessaire)

Exercice 121. Soit f(x) = 2 − 2 cos(x) − x · sin(sin(x)) et considerons an = f(1/n) pour n ∈ N.
Trouver toutes les nombres reels w telles que

∑
n≥1 a

w
n <∞.

Exercice 122. Etudier la convergence des séries suivantes en fonction d’une paramétre α > 0:
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1.
∑
n≥1

(
b1/n − 1

)α
2.
∑
n≥1

(
n1/n − 1

)α
Exercice 123. Démontrer que:

∑
n≥2

exp
(
n(1− n1/n)

)
ln2(n)

<∞

(si nécessaire passer par comparaison avec l’integrale)

Exercice 124. Etudier convergence:∑
n

∣∣∣cos((n3 +√
n+ 7

)1/3)− cos
((
n3 − 2

√
n+ 3

)1/3)∣∣∣
Indication: utiliser cos(a) − cos(b) = − sin((a − b)/2) sin((a + b)/2) et les équivalences, puis obtenir

comparaison avec n−α, α > 0

Exercice 125.
Etudier convergence:

1. ∑
n≥1

(−1)n ln
(
1 + n

√
n
)

2. ∑
n≥1

(n+ 1)!(n+ 1)n−1

n2n

3. ∑
n≥1

lnn2√
n+ 1

sin

(
(2n+ 1)π

2

)

9 Integrale de Riemann
Exercice 126.

Calculer les limites suivantes

1. limn→∞
∑n
k=1

√
2−

(
k
n

)2 k
n2

2. limn→∞
∑n
k=1

√
2n2+kn−k2

n2

3. limn→∞

(
(n+1)n+1(n+2)n+2...(2n)2n

nn+1nn+2...n2n

)1/n2

4. limn→∞
∑p=2n
p=n+1

1
pα en fonction de α ≥ 1, puis avec sin(1/p) au lieu de 1

pα

Exercice 127.

1. Soit f une fonction derivable. Demontrer qu’il existe une constante C telle que:

∀k ∈ N
∫ 2π

0

f(x) sin(kx)dx ≤ C

k

2. Est-ce que le meme resultat tiendra si on remplace f par une fonction constante par morceaux ?
Puis continue par morceaux.
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Exercice 128.
Soit α ∈]0, 1[. Calculer la limite:

lim
r→0+

1

r |ln r|α
∫ r

0

|lnx|α e−x
2

dx

Si besoin on peut admettre:∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

fp(x)dx

∣∣∣∣∣
1/p ∣∣∣∣∣

∫ b

a

fq(x)dx

∣∣∣∣∣
1/q

p−1 + q−1 = 1

Exercice 129.
Calculer la limite:

n∑
k=1

sin

(
k

n

)
sin

(
k

n2

)
lorsque n→ ∞

Exercice 130.
Calculer la limite:

n∏
k=1

(
1 +

k

n
sin

(
k

n2

))
lorsque n→ ∞

Exercice 131.
Soit f continue. Demontrer que F :

F (x) =

∫ b

a

f(t) sin(xt)dt

est lipschitzienne si a < b ∈ R.

1. Quel hypothese sur f faut-il pour que F soit lipschitzienne si a = 0, b = ∞ ?

2. Soit F (x) =
∫ b
a
f(xt)dt pour f continue, pas forcement Lipschitz et x ≥ 0. Est-ce qu’on peut dire

que F est lipschitzienne sur R+ ?

Exercice 132.
Soit f fonction continue telle que limx→∞ f(x) = a. Montrer que:

lim
x→∞

1

x

∫ x

0

f(t)dt = a

10 Theorie de nombres
Exercice 133.

Soit a, b premieres entre eux. Montrer que ln(a)/ ln(b) est irrationnel.

Exercice 134.
Montrer que 40nn!|(5n)!

Exercice 135.
Soient a et b deux rationnels tels que a+ b, a× b sont des entiers. Prouver a et b sont des entiers.

Exercice 136.
Demontrer que pour tous x, y ∈ R∗

+ et tout n ∈ N \ {0} on a
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xn − yn = (x− y)

n−1∑
k=0

xkyn−k−1

En deduire que 609|54n − 24n

Exercice 137.
Soient a, b, n trois entiers supérieurs ou égaux à 1. On note q le quotient de la division euclidienne

de a− 1 par b, et r le reste. Déterminer le quotient et le reste de la division euclidienne de abn − 1 par
bn+1.

Exercice 138.
Calculer les pgcd suivants (n2 + n) ∧ (2n+ 1), (15n2 + 8n+ 6) ∧ (30n2 + 21n+ 13)

11 Denombrement
Exercice 139.

Combien de sequences {0, 1, 2}n avec au moins un zero, un 1 et un 2.

Exercice 140.
Soit m ∈ N. Calculer le nombre de sequences (a1, a2, ..., an) ou ai ∈ {0, 1} telles que

|{i : ai = 0, ai+1 = 1}| = m

Exercice 141.
On divise l’ensemble {1, 2, ..., 2n} en n sous-ensembles de taille 2. Combien de possibilites de le faire

? Autrement dit, calculer la taille d’ensemble

{{w1, w2, . . . , wn} : ∀i ∈ {1, ..., n} |wi| = 2 w1 ∪ w2 ∪ . . . ∪ wn = {1, 2, . . . , 2n}}

Exercice 142.
Soit X un ensemble d’un taille 2n. Calculer le nombre de sous-ensembles A telles que |A| est divisible

par 2.

1. Démontrer
∑n
k=m

(
k
m

)
=
(
n+1
m+1

)
2. Démontrer que le nombre de sous-ensembles de taille 2 est égale à

(
2n
2

)
. Generaliser à taille

2k, k ∈ {1, ..., n}

3. Calculer la somme de expressions obtenus dans le point 2.

Si besoin dans le point 3 on peut s’appuyer sur:

n∑
k=0

(
n

k

)
= 2n

n∑
k=0

(−1)k
(
n

k

)
= 0

Exercice 143.
Soit Pr(n) = {A ⊂ {1, ..., n} : |A| = r}. Calculer pour r = 2, 3∑

A∈Pr

min(A)

Est-ce qu’on peut generaliser a r quelconque ?

Exercice 144.
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1. On a k boules differents. On tire deux fois avec remplacement. Demontrer que

k2 =

(
k

1

)
+ 2

(
k

2

)
2. Utiliser

∑n
k=m

(
k
m

)
=
(
n+1
m+1

)
pour calculer

∑n
k=1 k

2.

12 Probabilite
Exercice 145.

On dispose n pieces, mais k parmi eux sont asymmetriques et tombe sur pile avec probabilité 1/3.
On a choisi une piece par hasard et a obtenu une pile. Calculer la probabilité que c’était une piece
symmetrique.

Exercice 146.
On a n boules dans une urne, avec n ∈ {2, 3, 4, 5} (on ne sait pas). On tire deux boules sans remise

et écrire les chiffres dans l’ordre de tirage. Le nombre qu’on a obtenu a été inférieure a 44. Calculer la
probabilité que n = 3.

Exercice 147.
On a n pieces et parmi eux il y a une piece avec deux piles. Sur une piece choisi par hasard on a pile

6 fois d’affilé. Calculer la probabilité que c’était une piece avec deux piles.

Exercice 148.
Arnault, Benoît et Camille essayent de obtenir pile, chacun une fois. On sait que deux d’entre eux

on réussi. L’événement plus probable est a) Camille a réussi b) Camille n’a pas réussi c) tous les deux
ont la probabilité égale

Exercice 149.
On lance une piece symmetrique 2n fois. Soit P2n une nombre de piles obtenus et F2n une nombre

de faces obtenus. Fixons k ∈ N (qui sera un constant). Calculer

lim
n→∞

P (|P2n − F2n| ≤ 2k)

Utiliser la formule n! ≃
√
2πn

(
n
e

)n
Exercice 150.

Un joueur peut gagner 1 euro avec probabilité p ou en perdre avec probabilité 1 − p. Il commence
avec le capital C de C = a euros. Le jeu s’arrête dès que C = 0 ou C = c, c > a. Calculer probabilité
qu’il existe un moment ou C = 0

Exercice 151.
On a n ∈ N boules noires et b ∈ N blanches, on tire les boules succesivement. Soit Ck un evenement

"n-eme tirage donne une boule noire". Demontrer que P (Ck) =
n
n+b .

Exercice 152.
Calculer le probabilité que le nombre de réussites dans le scheme de Bernoulli avec n et p sera divisible

par 2. Calculer la limite n→ ∞.

Exercice 153.
Calculer le probabilité que le nombre de réussites dans le scheme de Bernoulli avec n et p = 1/2 sera

divisible par 3 et 4. Calculer la limite n→ ∞.

Exercice 154.
Société d’assurance a des clients qui sont à cause des accidents avec probabilité pAc (c est pour calme)

et des autres qui sont a cause des accidents avec probabilité pAf (f est pour fou). Proportion du chaque
groupe des clients est donne respectivement avec q et 1 − q. Probabilité d’accident est constante pour
chaque client chaque année. Calculer
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1. Calculer la probabilité d’accident pour un client choisi au hasard

2. Calculer la probabilité que le client qui été à cause d’un accident en année N sera à cause d’accident
en année N + 1.

3. Il n’y a pas notion de consequence dans la modele, pourtant on observe que la probabilité d’accident
est plus élevé dans le point 2 que dans le point 1. Pourquoi ?

13 Produits scalaires
Exercice 155.

Soit (αn) une suite de vecteurs orthonormaux dans une espace euclidien (V, ⟨, ⟩).

1. Démontrer que α =
∑n
i=1⟨α, αi⟩αi si α = Vec(α1, ..., αn).

2. Soit v tel que ∥v∥2 >
∑n
i=1⟨αi, v⟩2. Est-ce possible que v ∈ Vec(α1, ..., αn)

Exercice 156.
Soit Mt une matrice:

Mt =

2 1 0
1 t 1
0 1 2


1. Pour quel t on a (1, 0, 0)Mt(0, 0, 1)

T = 0 ? Si t = 2 completer (1, 0, 0), (0, 0, 1) a une base d’espace
(R3,M2). (on peut admettre que (v, w) 7→ (v,M2w) est un produit scalaire)

2. Soit L = (1, 1, 2) + Vec((1, 0, 0)),K = (1, 2, 2) + Vec((0, 0, 1)). Trouver une distance entre L,K
dans l’espace (R3,M2).

Exercice 157.
Soit H,M ⊆ R4 sous-espace affines. Si H = v + W , où W est une espace linéaire, on notera

W = T (H).

H = {(x1, x2, x3, x4) ∈ R4 : x1 + x4 = 4, x3 + x4 = 2} M = (1, 0, 2, 0) + Vec((0, 1, 0, 0), (0, 0, 1, 1))

1. Trouver une base orthonormale d’espace T (H) + T (M), completer à une base orthonormale de R4

2. Soit f : R4 → R4 une projection orthogonale sur M . Démontrer que f((3, 0, 1, 1)) = (1, 0, 2, 0).

3. K = f(H). Démotrer que K est une droite et trouver sa parametrisation

4. Trouver la distance ρ(H,M)

5. Démontrer que pour tout k ∈ K on a ρ(k,H) = ρ(M,H)

Exercice 158.
Dans l’espace R2 avec un produit scalaire standard trouver deux vecteurs u, v telles que u ∈ Vec((1, 3)), v ∈

Vec((1, 3))⊥ et u+ v = (1, 2). Pareil pour R4, u = (1, 2, 0, 3), v = (2, 3,−1, 0) et on veut trouver a, b ∈ R
avec z = (0, 0, 1, 1) + av + bw ∈ Vec((u, v))⊥ (Si cela prends trop du temps, on se contentera de système
linéaire finale à résoudre)

Exercice 159.
Donner un exemple d’un produit scalaire* tel qu’une système α1 = (1, 0, 0), α2 = (0,−1, 0), α3 =

(1, 0, 1) soit une base orthonormale de R3 muni de ce produit scalaire.
*on cherche dans l’ensemble des applications φ(u, v) =

∑
ij αijuivj , donc il faut trouver les valeurs

de αij .

21



Exercice 160.
Dans une espace R4 donner système linéaire qui décrit espace orthogonale a W = {(x1, x2, x3, x4) :

x1 − x2 + x3 − x4 = 0}.

Exercice 161.
Dans l’espace R≤n[x] un produit scalaire de polynôms s’écrit avec ⟨f, g⟩ =

∑n
i=1 aibi. Trouver une

complémentaire orthogonale a:

1. sous-espace des polynôms avec f(1) = 0

2. sous-espace des polynôms de dégre paire

Exercice 162.
Soit (vi), (wi) deux suites de vecteurs dans l’espace euclidien avec ⟨vi, wj⟩ = δij . Démontrer que vi

est une famille libre.

Exercice 163.
Soit V une espace euclidien et soit W1,W2 sous-espaces de V avec dimW1 < dimW2. Démontrer

qu’il existe une vecteur v ∈W2 avec v ∈W⊥
1

Exercice 164.
Soit αt = (t2, 0, 1, t) et soit βt une projection orthogonale sur Vec((1, 1, 1, 1)). Pour quel t la longueur

de βt est-elle minimale ?

Exercice 165.
Appliquer Gram-Schmidt a:

1. v1 = (2,−1, 0,−2), v2 = (4, 1, 4,−4), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1)

2. W = Vec((1, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 1))

Exercice 166.
Soit V une espace linéaire avec deux produits scalaires φ,ψ qui satisfient:

ψ(u, v) = 0 ⇔ φ(u, v) = 0

1. Démontrer que ψ(u, u) = ψ(v, v) ssi φ(u, u) = ψ(v, v)

2. Démontrer qu’il existe c > 0 tel que ∀ u, v ∈ V on a ψ(u, v) = cφ(u, v)

22


	Suites
	Polynoms
	Continuite, limites, variations
	Convexite
	Developpement limites
	Algebre lineaire
	Determinants
	Series numeriques
	Integrale de Riemann
	Theorie de nombres
	Denombrement
	Probabilite
	Produits scalaires

